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ABSTRACT 

::: 
We construct a unitary Deck model with coupled Kn and Kp channels, 

including only one resonance in the Q region. Adjusting the resonance 

parameters, we achieve a satisfactory description of the experimental 

phase variations and structure in the mass spectra. The resonance is deter- 

mined to belong to the J PC = 1+- SU(3) octet, and is thus the QB. The rcla- 

::; 
tive coupling strength K TT /Kp is -213. 
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Among the two octets of axial-vector meson resonances pre- 

dicted by the quark model, only the B meson has been unambiguously 

identified. The apparent absence of the others is an outstanding 

difficultyl . Very recently, a SIX group? reported evidence for 

the existence of two strange axial-vector mesons, Q, and Q2 . 

Their conclusion is based both on structure in the K*a and Kp 

mass distributions and on observed phase variations. In this 

article, we show that all these significant features of the data 

may be understood in terms of only one axial-vector resonance, - 
and a non-resonant Deck background2 . The resonance couples to 

both the Kp and K*r channels. For reasons we describe, it must 

have odd charge conjugation relative to the K . It is thus the 

QB ' with Jpc=l+- . We find that its mass lies between 1.3 

and 1.4 GeV, and its width is of order 150 MeV. Our description 

of the data without a Q, (Jpc= I++) resonance is consistent 

with the apparent absence of a resonance signal in the .Tp=1+ np 

Al system? . 

We begin with two assumptions. First, there are non- 

resonant Deck amplitudes, sketched in Fig.1, for both the K*g 

and Kp channels. We extract the Jp = 1+ partial wave 

from each of these. Second, we assume that there is one reson- 

ence, with mass, width and branching ratios to be determined, 

which couples to both K** and Kp channels. The rest is a 

classical two-channel problem of finding a properly analytic and 

unitary JP=l+ partial wave amplitude which fulfills our 

assumptions. We then vary the parameters of the resonance to 
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achieve an acceptable representation of the data. The structure 

in the data requires that the resonance have odd C. 

The Deck model has been described at length elsewhere? 

We quote here the analytic form valid near t = 0 for the 

JP = 1+ 9, 
S wave KII amplitude, with helicity zero in the 

Gottfried-Jackson frame. 

AK$s,M2,t) = 
2g 

(ML -mz) 
exp(b,,t) . 

Kinematic variables are defined in Fig.1. Here, [gK*l is the 

incident kaon three-momentum as seen in the K* rest frame; 

u 
v 

is the asymptotic rp total cross-section; b, is the 

slope parameter for ap elastic scattering; and 

g2 
K*K+a- 

= 4a(1.66). 

Likewise, for the kaon exchange Deck graph in Fig.l(b), 

the .I P = l+ S wave helicity zero KP amplitude is 

ApK(s,It2,t) = 
2g pKKl$ I '%p 

CM2 - 41 
exP(bKt) . 

The symbols have the same meanings as above except that 

is the incident kaon three-momentum evaluated in the p rest 

frame. For normalization, we adopt the SU(3) relationship 

(1) 

(2) 

2g =g 2 
p°K+K- pOIT+lT- 

, with g p+r-r- = 4nC.2.4) . We evaluate 
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eff 1% Jrl and I~,1 at t2 = -0.2 GeV' which we take to be independ- 
K 

ent of t and M. For the rest of this article, we specialize to 

t = 0. 

We write the Deck contribution as a two component vector: 

The Deck amplitudes provide a Jp = 1+ cross-section do/dM 

which rises from threshold and then decreases at large M2 as 

M-3 . These cross-sections are shown as dashed lines in Fig. 2; 

they show no structure. 

Our second assumption is that in addition to the Deck ex- 

change contribution, there is one resonance in the Jp = 1+ 

wave, which decays into both K%and Kc . A unitary S matrix 

representing the coupled channel K*v and Kc S wave scattering 

is easily constructed. We begin with the real synrmetric K 

matrix 

K= 

Here s1 is related to the squared mass of the resonance and 

g and f to its coupling constants to K*r and Kp , respectively; 

2 a = g2 i- f2 The S matrix is then 

s = 1 - K(M2)C+(M2> -' 
I c 

1 - K(M')C-(I+') 9 
I 

(3) 

(4) 

(5) 
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where the C matrix is diagonal (C) ij = aijCi(M2) . The Cl and 

C2 are the usual unequal mass Chew-Mandelstam functions? for 

K*r and Kp respectively. E.g., Cl(M2) is cut from 

M2 = (m *+mr)' to - ; for Mz (m *+rna), it satisfies 
K K 

Im C,(M') = 2 5 M2-(m *+m$ 
2 k-2 

11 
M -(m 

K 
(6) 

Each Ci is defined so that Ci(0) = 0. Equation (5) then 

provides a strong interaction s matrix with proper analyticity 

and unitarity properties. For a given function F(M'), the 

notation F'(M') is used to denote F(M2 +.ic), and AF(M2) 

= (F+-F-)/2i 

We now face the standard problem of correcting a production 

mechanism, here the Deck amplitude, 67 by final state interactions+ 

In our case we must use a coupled channel formulation.8 The 

Jp=l+ S wave amplitude vector should be analytic in the complex 

M 2 plane cut from - mto M 2L (left-hand cut) and from M2E to + - 

(right-hand cut). It should satisfy the following discontinuity 

relationships across these cuts: 

a) T+(M2> = S(M2)T-(M2) M2 >M2E ; Generalized Watson Theorem?, 

where in the unitarity relation, we retain only the K*n and the 

KP intermediate states. 

b) The left-hand cut discontinuity is given by the Deck 

amplitude: AT(M') = AT,(M') , for M2cM2L . 

Furthermore, we require that T(M2) reduce to TD(M2) when the 

S matrix, Eq. (5) is identically unity.10 
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The unique solution to this problem is the Cauchy 

integral 6,7,8 

T(M2) = Dy2) 
< 

/ 

D-'(s,)ATD(s*)ds' 
s -s 

-m 

(7) 

where D(M2> is an invertible 2x2 matrix, whose elements are 

analytic in M2 D(M2) possesses only the right-hand cut, and 

satisfies D+(M'> = S(M')D-(M2) across this cut, above the 

threshold&. D(M2) is unique up to normalization5 which cancels 

in Eq.(7). The factorized form chosen for K(M2) in Eq.(4) 

permits us to obtain an analytic expression8for D(M2) 

Because the S wave Deck amplitudes, Eq.(S), are simple poles 

in M2, the integrals in Eq.(7) may be performed explicitly. 

For the final Jp = 1+ partial wave amplitude, we derive 

T(M2) = 
-2 ci 

(sl-M2-f+2-g2C1 

,K~~2)~g2[sl-m~-e$l(m~)]+f2~[sl-M2-a2C2(M2~~ 

+ gfAKp(M2) 
I 
M2-~-.2~2(m;)+a2C2(M2) 

I 

__________--_------- 

K,(M') ~f2[sl-m~-&2(m~~ +g2[sl-M2-a2C1(142j[ 

+ gfA -k (M2) M2-,2-a2C1(m~)+a2C1B12) 
Kll I IT 

(9) 
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The upper element of the vector T(M2) is the K*n channel 

amplitude, whereas the lower is the Kp amplitude, The structure 

of each amplitude in Eq.(9) is that of a resonance term 

[sl-M2-f2C2-g2Cl] =(sl -P42-iTM) convoluted with a sm of the 

K*n and Ko Deck amplitudes. Moreover, multiplying each of the 

Deck amplitudes A x- and AKp is a complex function of M2, with 
KlI 

zeroes in the real part occuring at values of M2 fixed by the 

resonance parameters s1 and (f/g) . These zeroes provide structure 

in the cross-section do/dM 

It is instructive to consider the equal mass SU(3) limit 

$=m, ; mp=mK*) . We define the ratio r = gpuKpf/~K*onpg ’ 

Doing so, we find that T(M2) + TD(M2) if r = -1. Thus, in 

the SU(3) limit, the production mechanism is left unaffected by 

the resonant final state interaction if the Deck and resonance 

amplitudes are orthogonal. By contrast, 

if (gKXUnp/gpaKp 

2 s1-m~-a2C1(m~) 
)=(g/f),then T(M2) = TD(M ) 

sl-M2-a'Cl(M) ' 

In this latter case, with the Deck and resonance amplitudes pro- 

portional to each other, the final amplitude in each channel is 

the Deck amplitude multiplied directly by a resonance line shape. 

The resonance factor provides an enhancement in the amplitude 

of order Islh2Cl(M)I = (fil/r) at the resonance location. 

With Gl = 1.3 GeV and r = 0.1 GeV, this enhancement would 

increase the amplitude by an order of magnitude. 



8 FERMILAB-Pub-76/39-THY 

In the phys ical situat ion with mK # mr and mp # m Jx , the 

KG and KP 
K 

thresholds are displaced from each other, Neverthe- 

less, it remains true that the ratio r is the critical parameter 

in the problem. With normalization of the Deck amplitude fixed, 

we vary f/g and observe the resultant changes in the K*v and 

KP amplitudes. Our optimal results are shown in Fig. 2 and 

are compared with the simple Deck results. The overall agreement 

with data2 . 1s qualitatively excellent and is even quantitative 

for the Kc mass distribution (Fig.2(b)), the Ko vs K*n 

relative phase (Fig.Z(c)), and the relative cross-sections. The 

results shown are insensitive to reasonable modifications of the 

Deck amplitudes. For example, the use of form factors in the 

r and K exchange legs of Fig.1 may change the relative normal- 

ization of the two Deck terms. By making compensating changes in 

our (f/g) ratio, we can maintain the essential features of Fig.2. 

Several points should be emphasized. To obtain a dip in 
;k 

the Kn mass distribution, it is necessary that (f/g) be negative 

relative to (gK*K;i/gpKK) . Therefore, the resonance must have 

odd C relative to the kaon. It is thus the QB,Jpc = l+-. 

The relative heights of the two peaks in the K)'n mass spectrum, 

the width of the threshold structure in the Kp mass distribution, 

and the K*?l VS. Kc phase variation are controlled by the 

magnitude of (f/g) In our solution, we find (f/g) = -1.5, 

with the Kp coupling favored. The SU(3) prediction is (f/g) =- 1 

for the Q,. The position of the dip in the K*a spectrum is 
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influenced by our choice of resonance position. We use 

M res = 1340 MeV to obtain the results in Fig, 2. Lowering 

this value, we would displace the dip to lower mass. It is the 

resonance which generates the sharp structure near the Kp 

threshold. By contrast, as shown in Fig.Z(b), the Deck 

amplitude alone rises slowly from threshold. 

The variation of @rel shown in Fig.2(c) is in excellent 

agreement with the data, increasing from -30° at Mc1.26 GeV 

to +40° at M = 1.35 GeV, and then falling again. The phase of 

our K*n amplitude varies very slowly in the region M>1.35 

GeV, with an average value of -5O Owing to the K*(l420) 

resonance, we expect the 2+K*a phase to vary relative to the 

l+K*r phase as M is increased through 1420 GeV. However, 

the rise may be limited because the K*n branching fraction 

of the K*(l420) is only 30%. Both experimental groups& indeed 

observe a phase increase of roughly +50% in the neighborhood of 

the 1420, consistent with our expectations. 

Two discrepancies may be noted between our theoretical 

curves, Fig.2, and the data. We obtain roughly Z/3 of the 

measured absolute cross-section. Second, our K*r mass distribu- 

tion is somewhat too broad. It rises too quickly from threshold 

and falls off too slowly above 1.4 GeV. Narrowing of the mass 

distribution can be accomplished with form factors in t2 and/or 

Reggeization of the r and K exchanges in the Deck amplitudes. 

Otherwise, the K matrix, Eq.(4), can be improved. The factor- 

ized form in Eq.(4) was dictated by our desire to obtain an 

analytic answer. At the expense of additional parameters, for 
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example, a non-resonant background in K, we would have greater 

flexibility to describe the data in detail. The shortage of 

overall cross section opens the issue of whether there is room 

for a second Q resonance, a state with J PC = ltl- In a more 

complete Deck amplitude, one would include graphs with K* and o 

exchanges, in addition to the TI and K exchange graphs shown in 

Fig.1. Data suggest that these vector exchanges contribute with 

cross-sections roughly equal to the pseudoscalar terms,? thereby 

making up the cross-section shortage. Moreover, we argued above 

that a resonance with C> 0, i.e. (f/g) > 0 results in an 

enhancement of the Deck amplitudes, of order Mres/r at the 

resonance. Thus, only a very broad QA could be tolerated in 

our framework. 

In this article we have discussed the dominant t-channel 

helicity ht = 0 amplitudes at small t . The relative size of 

the Deck amplitudes for K*B and Kp changes as t is increased. 

This alters the positions and relative heights of the two peaks 

in the K*rr mass distribution, as well as the K*a/Kp relative 

cross-section and phase. The At=1 Deck amplitudes have a 

more complicated dependence on M than Eqs.(l) and (2). In a 

future more detailed paper we expect to address the variation 

with t as well as the full spin problem. 

In conclusion, we have constructed an explicit unitary 

Jp = 1+ S wave coupled channel amplitude for the Q region, 

composed of one resonance and a Deck component.~ By adjusting the 

parameters of the resonance in interference with the Deck ampli- 

tude, we achieve a good representation of the data. We determine 
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the mass Mz1340 MeV, width T=150 MeV and relative K*r/Ko 

coupling f/g= -1.5 of this Q, resonance, as well as its charge 

conjugation. The normalization is controlled by our Deck term. 

The overall agreement with the data leaves little room for a 

Q, Jpc = I* resonance in the same mass region unless its width 

is very large. We note that the interplay of Deck and the Q, 

resonance is crucial for determining the Krx mass distribution. 

In non-diffractive processes, e.g. fip or charge-exchange 

production, the shape of the Knn mass spectrum in the QB 

region may be very different. 

We are grateful to C. Sorensen for valuable comments. 

J.L.B. is grateful to Prof. B. W. Lee for kind hospitality at 

Fermilab. 
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FIGURE CAPTIONS 

Fig. 1 a) Pion-exchange Deck graph for K-p+K*'koa-p; 

b) Kaon-exchange Deck graph for K-p-+pK-p. The kinematic 

variables are indicated; P stands for Pomeron exchange. 

Fig. 2 Mass dependence at t=O of d2a/dMdt in the 

JPht=l+O partial wave for a) the K*n and b) the Kp 

channels. The dashed lines represent the pure Deck model. 

The solid lines are from our unitarized Deck model. 

We determine the mass and width of the Q, resonance 

(1.34, 0.15 GeV) from the position of the second sheet 

pole. These correspond to %=1.43 GeV, g= - 0.35 , 

and f=O.55 in Eq. (4) . 
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